Dr. Marques Sophie Office 519 Number theory

Fall Semester 2013 marques@cims.nyu.edu

Due Friday november 22rst in recitation.

Problems:

- 1. Show that if n = pq is a product of distinct primes and $d \equiv 1 \mod (p-1)(q-1)$ then $A^d \equiv A \mod n$.
- 2. Show that if p is an odd prime and a is a primitive root mod p, then

$$\left(\frac{a}{p}\right) = -1$$

- 3. Show that if n = pq with p < q, and p, q both prime, then it is not possible for q-1 to divide n-1. (Hint: If it did, then show that the other factor would have to be too big...)
- 4. Prove that the equation $x^2 3y^2 = 5$ has no solution in integers.
- 5. Compute $\left(\frac{35}{149}\right)$.

Solution:

1. Notice that $(p-1)(q-1) = \phi(n)$. We know that $A^{\phi}(n) \equiv 1 \mod n$. Since $de \equiv 1 \mod \phi(n)$, then $d = 1 + \phi(n)r$, and the

$$A^d \equiv A^{1+\phi(n)r} \equiv A \times (A^{\phi})^r \equiv A \mod n$$

- 2. By Euler's criterion $\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}} \mod p$. Since a is a primitive root mod p, the order of $a \mod p$ is p-1, so $x = a^{\frac{p-1}{2}} \not\equiv 1 \mod p$, since $\frac{p-1}{2} < p-1$. But $x^2 = a^{p-1} \equiv 1 \mod p$, since p is prime, $a \equiv \pm 1 \mod p$. So $x \equiv -1$, so $-1 \equiv a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right)$, so $\left(\frac{a}{p}\right) = -1$.
- 3. Suppose q 1|n 1, so n 1 = (q 1)s; since n = pq, we have pq 1 = qs s, so q(s - p) = s - 1, so q|s - 1. Note that since $p \ge 2$, n > q, so n > q, so n - 1 > q - 1, so $s \ge 2$. But q|(s - 1) means $|q| \le |s - 1|$, i.e. $s \ge q + 1$, but then $n - 1 = (q - 1)s \ge (q - 1)(q + 1) = q^2 - 1$, so $n \ge q^2 > pq = n$, a contradiction. So q - 1 cannot divide n - 1. Another, shorter, approach: If n - 1 = (q - 1)s, then since n - p = (q - 1)p, we have p - 1 = (q - 1)(s - p), so (q - 1)(s - p), so (q - 1)|(p - 1), so $|q - 1| \le |p - 1|$, which is impossible, since p < q.

- 4. Consider the equation modulo 3. We get $x^2 \equiv 5 \mod 3$. But $5 \equiv 2 \mod 3$ is not a square modulo 3, so this is not possible. Thus the equation has no solutions in integers.
- 5.

$$\left(\frac{35}{149}\right) = \left(\frac{149}{35}\right)(-1)^{\frac{149-1}{2}\frac{35-1}{2}} = \left(\frac{35\times4+9}{35}\right)(-1)^{74\times17} = \left(\frac{9}{35}\right) = \left(\left(\frac{3}{35}\right)\right)^2 = 1$$